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This article presents a comparison of the predictions of three RANS codes for flight 
conditions of the F-16XL aircraft which feature vortical flow. The three codes, ENSOLV, 
PMB and PAB3D, solve on structured multi-block grids. Flight data for comparison was 
available in the form of surface pressures, skin friction, boundary layer data and 
photographs of  tufts. The three codes provided predictions which were consistent with 
expectations based on the turbulence modelling used, which was k-ε, k-ω with vortex 
corrections and an Algebraic Stress Model. The agreement with flight data was good, with 
the exception of the outer wing primary vortex strength. The confidence in the application of 
the CFD codes to complex fighter configurations increased significantly through this study. 

Nomenclature 
AVT = Applied Vehicle Technology (one of the seven panels within RTO) 
BL = Butt line on airplane, in. 
CAD = Computer Aided Design 
CAWAP = Cranked Arrow Wing Aerodynamics Project 
CAWAPI = Cranked Arrow Wing Aerodynamics Project International 
CFD = Computational Fluid Dynamics 

Cf = Skin friction coefficient ( )/( 2
2

1
∞∞= unt ρτ ) 

Cp = Pressure coefficient ( )/()( 2
2

1
∞∞∞−= upp ρ ) 

FS = Fuselage station on airplane, in.  
h = Airplane altitude, ft. 
k = Turbulent kinetic energy, ft2/s2  
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LES = Large Eddy Simulation 
Lref = Reference length, in. 
M = Mach number 
NASA = NATIONAL Aeronautics and Space Administration 
NATO = North Atlantic Treaty Organization  
NLR = Nationaal Lucht- en Ruimtevaartlaboratorium, Netherlands National Aerospace Laboratory 
PAB3D = Propulsion Aerodynamics Branch 3D URANS solver 
PANS = Partially Averaged Navier-Stokes 
PMB = Parallel Multiblock 
p =  Pressure, psia  
ps =  Static pressure, psia 

pt =  Total pressure ( 1))1(1( 2
2

1 −−+= γ
γ

γ Mp , psia 
p∞ =  Free-stream pressure, psia 
Pk = Production of turbulent kinetic energy 
Pk

u = Unlimited production of turbulent kinetic energy 
r = Ratio of the magnitude of the rate-of-strain and vorticity tensors 
RANS = Reynolds-averaged Navier-Stokes 
Re, Rn = Reynolds number  
RTO = Research and Technology Organization – scientific arm of NATO  
S =  Simulation  
Sij = Mean flow strain rate, s-1 
SZL  = Shih-Zhu-Lumley 
T   = Temperature, °R  
Ts   = Static temperature, °R 

Tt   = Total temperature ( ))1(1( 2
2

1 MT −+= γ , °R 

TNT = Turbulent non-turbulent 
TVD = Total variation diminishing 
u = Velocity, ft/s 
u = Velocity vector, ft/s 
u∞ = Free-stream velocity, ft/s  
URANS = Unsteady Reynolds-averaged Navier-Stokes 
VFE = Vortex Flow Experiment 
V/VRE = Ratio of velocity magnitude in boundary layer to that at the Rake Extreme total-pressure tube 
x/c = Fractional distance along the local chord, positive aft 
y/s = Fractional distance along the local span, positive outward 
y+ = Re-like term for flat plate turbulent boundary layer  
z = Normal distance above the surface at a rake location, mm 
α = Angle of attack, ° 
β = Side-slip angle, ° 
γ = Specific heat ratio (=1.4) 
ρ = Density, slugs/ft3 
ρ∞ = Free-stream density, slugs/ft3 
Ωij = Vorticity, s-1 
τnt = Tangential component of the total stress tensor, psia 
ω = Specific turbulent dissipation rate, 1/s  

I. Introduction 
pplication of Computational Fluid Dynamics (CFD) methods to support the operation of fighter aircraft 

requires realism and cost-effectiveness compared with alternatives such as wind-tunnel tests or flight tests. 

Two envisaged applications of CFD are for the assessment of stability and control characteristics, and the 

calculation of changes in aircraft loads due to new store configurations. By using CFD the number of flight 
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conditions in a flight test certification program can be optimized and potentially dangerous cases can be identified 

beforehand. To enable application of CFD methods for such purposes, the methods should be well validated and 

evaluated against state-of-the-art wind tunnel and/or flight test data. 

The Cranked-Arrow Wing Aerodynamics Project (CAWAP) [1] provided the CFD community with an excellent 

database for validation and evaluation purposes. This project focused on the understanding of flow phenomena 

encountered on the cranked-arrow wing of the F-16XL aircraft. The CAWAP database contains both subsonic and 

transonic data at flight Reynolds numbers. The data obtained during the flight tests comprised surface pressure 

measurements, both along butt line stations and fuselage stations, boundary layer measurements at four positions on 

the left wing, skin friction measurements at the FS330 station on the left wing and surface flow visualizations using 

tufts. 

Initiated by NASA, the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) [2]-[6] was started 

as a follow-on project. Along with the Vortex Flow Experiment 2 (VFE-2) [7], this project was incorporated under 

the NATO RTO working group AVT-113. This article reports on contributions to CAWAPI made by National 

Aerospace Laboratory NLR, University of Liverpool and NASA Langley made using structured multi-block flow 

solvers. 

This article continues with a summary of the flow solvers used. The generation of a common grid is summarised 

and then results are compared for several flight conditions that feature vortical flow. Finally the performance of the 

solvers is evaluated and conclusions are drawn. 

II.  Flow solvers 

A. NLR Solver (ENSOLV) 

The flow solver ENSOLV, which is part of NLR’s flow simulation system ENFLOW [8], is capable of solving 

the Euler and Navier-Stokes equations on multi-block structured grids for arbitrary configurations. The 

configuration can be either fixed or moving relative to an inertial reference frame, and can be either rigid or flexible. 

The equations in full conservation form are discretized in space by a second-order accurate, cell-centred, finite-

volume method, central differences, and matrix artificial diffusion. The artificial diffusion consists of a blending of 

second-order and fourth-order differences with a Jameson-type shock sensor for the basic flow equations and a TVD 

discontinuity sensor for the turbulence model equations. For steady flow simulations, the discretized time-dependent 
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system of equations is integrated toward the steady-state solution using a five-stage explicit Runge-Kutta scheme. 

Local-time stepping, implicit residual averaging and multi-grid acceleration techniques are applied.  

B. Liverpool Solver (PMB) 

The PMB solver [9] has been under development at the Universities of Glasgow and Liverpool during the past 

decade. The Euler and RANS equations are discretised on curvilinear multi-block body conforming grids using a 

cell-centred finite volume method which converts the partial differential equations into a set of ordinary differential 

equations. The convective terms are discretised using Osher’s upwind method. Monotone Upwind Scheme for 

Conservation Laws variable extrapolation  is used to provide second-order accuracy with the Van Albada limiter to 

prevent spurious oscillations around shock waves. Following Jameson, the spatial residual is modified by adding a 

second order discretisation of the real time derivative to obtain a modified steady state problem for the flow solution 

at the next real time step, which is solved through pseudo time. This pseudo time problem is solved using an 

unfactored implicit method, based on an approximate linearisation of the residual. The linear system is solved in 

unfactored form using a Krylov subspace method with Block Incomplete Upper Lower preconditioning. The 

preconditioner is decoupled between blocks to allow a high efficiency on parallel computers with little detriment to 

the convergence of the linear solver. For the Jacobian matrix of the CFD residual function, approximations are made 

which reduce the size and improve the conditioning of the linear system without compromising the stability of the 

time marching. 

C. PAB3D Solver 

The PAB3D CFD code [10] is a structured, multi-block, parallel, implicit, finite-volume solver of the three-

dimensional RANS equations. Advanced turbulence models are available in the code. Viscous models include 

coupled and uncoupled Navier-Stokes and thin layer Navier-Stokes options. Roe's upwind scheme is used to 

evaluate the explicit part of the governing equations, and van Leer's scheme is used for the implicit part. Diffusion 

terms are centrally differenced. PAB3D utilizes either a 2-factor or 3-factor numerical scheme to solve the 

governing equations. For unsteady calculations, PAB3D is second order in time with sub iterations. For steady state 

calculations, local time stepping and grid sequencing are applied to accelerate convergence. PAB3D is widely used 

for internal and external flow applications by NASA and by the US aerospace industry. PAB3D has several built-in 

time saving routines, including grid sequencing and distributed computer memory requirements, that permit the user 



 
American Institute of Aeronautics and Astronautics 

 

5 

to quickly obtain a converged solution. There are several state-of-the-art two-equation and algebraic Reynolds stress 

turbulence models implemented. In an attempt to increase the fidelity and accuracy, multi-scale-type (hybrid) 

turbulence models: URANS/LES [11] and Partially Averaged Navier-Stokes PANS [12] have been added to the 

code. PAB3D has been well-tested and documented for the simulation of aero-propulsive and aerodynamic flows 

involving separation, mixing, and other complicated phenomena. PAB3D is ported to a number of platforms and 

offers a combination of good performance and low memory requirements. In addition to its advanced pre-processor, 

which can handle complex geometries through multi-block general patching, PAB3D has a runtime module capable 

of calculating aerodynamic performance on the fly as well as a post processor used for follow-on data analysis. 

For this study, PAB3D used third order Monotone Upwind Scheme for Conservation Laws variable 

extrapolation of the fluxes with MINMOD limiter, and the upwind flux difference splitting of Roe for evaluating the 

convective terms. Viscous diffusion terms were modeled as uncoupled in the flow direction and fully coupled in the 

cross-flow direction. A 3-factor scheme was used for the approximation of implicit terms. Local time stepping and 

grid sequencing were applied to accelerate convergence. 

D. Turbulence Models 

1. Basic models 

The test cases which were computed for this article feature the flow over the F-16XL aircraft, with extremely 

complex geometry, at flight Reynolds numbers. The flows themselves are complex with multiple vortices present. 

The complex geometry provides a grid generation challenge, which is considered in the next section. The complex 

flow field provides a challenge to the turbulence modeling. In the current section the options used for this modeling 

are summarized. All calculations were made assuming fully turbulent flow. 

The basic Boussinesq models were of the 2 equation type. For ENSOLV, the TNT k-ω model, which is a variant of 

the Wilcox k-ω model, is employed. The equations of the model are slightly modified by the introduction of a ‘cross 

diffusion’ term [13]. This modification has been introduced to resolve the dependency of the free-stream-valued of 

ω.  In addition, to remove the singular behaviour of ω at solid boundaries, the equations of the k-ω model are 

reformulated such that instead of ω the quantity τ=1/(ω+ω0) is used. Here ω0 is a positive constant (default value 

ω0Lref/u∞=20, with U∞ the free-stream velocity and Lref the reference length). At the solid boundaries, both k and τ 

are set to zero. To prevent unphysical high values of k near stagnation points, the production term in the k-equation 

has been limited to a maximum of 20 times the dissipation term in the k-equation. At the ‘inflow’ parts of the far-
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field boundary, the free-stream values of the turbulent variables are computed from the free-stream turbulent 

Reynolds number (0.01 in the present simulations) and the free-stream dimensionless turbulent kinetic energy 

(k/uω
2=10-6 in the present simulations). For PMB the standard k-ω model was used. Finally, for PAB3D the standard 

k-ε model was used. In addition, the PAB3D code also presented results using the Shih-Zhu-Lumley (SZL) algebraic 

stress model [14], where the stress equation is given by:  
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Note the higher order nonlinear terms involving the deviatoric mean flow strain rate (ijS ) and vorticity (Ωij) 

tensors in the stress equation. In the Cµ equation, A0=6.5, and C2, As
*, and U* involve tensor products of Sij and Ωij 

and their variants. Algebraic stress models give inherently better results than the linear stress model because of the 

explicit modeling of effects such as relaxation and the specific inclusion of nonlinear anisotropic effects from the 

mean flow strain and vortices. 

 
2. Enhanced vortex correction model 

Boussinesq models over predict the eddy viscosity within the vortex core, leading to exaggerated diffusion of 

vorticity. As a consequence the details of the vortex core are lost and low suction peaks with wide vortex bases are a 

characteristic of the solution. For this reason an enhanced vortex correction model [15] [16] is used that controls the 

production of turbulent kinetic energy and hence eddy viscosity through either an increase in the production of 

dissipation (ω) or a decrease in the production of turbulent kinetic energy within regions of highly rotational flow. 

To illustrate, in the second variant, the production of turbulent kinetic energy k is limited as 

}})1,0min{0.20.2(,min{ * ωρβ krPP u
kk −×+=  

Here u
kP is the unlimited production of k and r is the ratio of the magnitude of the rate-of-strain and vorticity 

tensors. This approach has proven to be effective in producing surface pressure profiles on simple delta wings in 

good agreement with those of experimental data [15] [16]. The results presented in this article for the ENSOLV 
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solver uses the ω-enhanced version of this method based on the TNT k-ω model described above. The PMB results 

used the k-limited variant based on the k-ω model. 

 

3. Summary 

In summary, the ENSOLV results have been obtained using the TNT k-ω model with a ω enhancer vortex 

correction. The PMB calculations used the standard k-ω model with a k-limited vortex correction. PAB3D used the 

k-ε model and the SZL Algebraic Reynolds Stress model. 

 
 

III.  Grid generation 
 
A common grid for the block structured solvers was generated by NLR. The approach to grid generation is 

described in reference [3] and is not repeated here. Two small modifications to the surface description were made to 

further facilitate the generation of a structured grid. First, a small ‘step’ or ‘plate’ on the wing upper surface was 

removed. Secondly, the end part of the vertical tail base was slightly rounded off. Apart from these changes, the 

original definition of the geometry as given in the CAD model was respected. The final grid was produced in less 

than 4 weeks, including some development of the grid generation tools. This time compared favourably with that 

required to produce the unstructured grids in CAWAPI. 

The following family of structured grids has been used: 

• The baseline structured grid around the half-span full-scale model of the F-16XL consisting of 1903 

blocks, 14,750,720 grid cells and 17,014,119 grid points.  

• The baseline structured grid with a reduced number of blocks. The merging step resulted in a reduction 

of the number of blocks from 1903 to 216. 

• A structured grid around the full-scale model of the F-16XL consisting of 3806 blocks, 29,501,440 grid 

cells and 34,028,238 grid points. This grid has been generated by mirroring the baseline structured grid 

around the half-span full-scale model of the F-16XL with respect to the symmetry plane.  

The upper surface grid and the resulting y+ distribution over the upper surface are shown in reference [3], Fig. 7. 

From this figure, it is evident that the grid spacing normal to the surface has a desired value of y+ less then one 

(based on an ENSOLV solution), except for the regions below the vortical structures. 
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IV.  Results for Vortical Flow Flight Conditions 

A. Flight test cases 

Initially four flight conditions were selected for computation in CAWAPI of which three featured vortical flow. 

Later three additional flight conditions were added to the original set. These additional flight conditions also 

featured vortical flow, with flight condition 25 at higher incidence and the other two conditions (flight condition 50 

and 51) exhibiting side-slip. Only the vortical flow conditions are of interest in the current article and these are 

summarised in Table 1. Conditions 7, 19, 25 and 46 have zero side slip and were computed by all three codes using 

the baseline structured grid around the half-span full-scale model of the F-16XL. Conditions 50 and 51, which have 

non-zero sideslip, were computed using ENSOLV and PAB only using the structured grid around the full-scale 

model of the F-16XL. Results for all flight conditions can be found in reference [6]. In the current article results for 

flight conditions 7, 19 and 46 were evaluated in detail. 

 

Table 1: CAWAPI flight conditions 
  Nominal  Actual 

Flight condition 
 

α, ° β, ° h, ft M 
106 
Rn/ft 

 
α, ° β, ° M Re 

7  13 0 5000 0.29 1.79  11.89 -0.133 0.304 44.40 106 
19  13 0 10000 0.32 1.71  11.85 0.612 0.360 46.80 106 
25  20 0 10000 0.24 1.28  19.84 0.725 0.242 32.22 106 
46  10 0 24000 0.51 1.77  10.40 0.310 0.527 46.90 106 
50  13 5 24000 0.42 1.46  13.56 5.310 0.434 38.41 106 
51  13 -5 24000 0.42 1.46  12.89 -4.580 0.441 38.95 106 

 

Engine flow conditions were specified in CAWAPI and engine face and jet boundary conditions, based on this 

data, were used in the ENSOLV and PAB solutions. In ENSOLV, at the inlet duct exit plane (engine inlet) a 

prescribed normalized static pressure p/p∞ was used, whereas at the mixing plane (engine exit) a boundary condition 

with a prescribed normalized total pressure pt/pt,∞ and total temperature Tt/Tt,∞ was applied. For PAB3D, constant 

total values were specified for the nozzle inlet, and constant pressure boundary condition was specified at the nozzle 

exit. Preliminary calculations using ENSOLV, and all of the PMB calculations, used a simple flow through 

condition, where the engine face and jet plane were treated as far field boundaries. This treatment did not noticeably 

influence the predictions of the vortical flow on the upper surface of the wing and therefore no further discussion of 

the engine boundary conditions is made in this article. 
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B. Overview of Flow Topology 

Before looking to the results in detail, the large-scale vortical flow structure above the wing is discussed. Fig. 1 

shows an iso-surface of the vorticity magnitude for flight condition 7. The flow structure consists of several vortices: 

i) the inner wing primary vortex originating from the wing leading edge inboard of the crank, ii) outer wing vortex 

originating from the wing leading edge outboard of the crank, iii) the air dam vortex originating form the air dam at 

wing upper surface, iv) the missile vortices originating from the missile fins and v) the fuselage vortex. In addition 

to these vortices other vortical structures, such as for example the inner wing secondary vortex, are present. All 

flight conditions characterized by vortical flow exhibit a similar vortical flow structure, although the strength and 

location of the vortices may differ. 

C. Comparison with Flight Data 

The predictions are now compared against available flight data. Note that the common flight conditions chosen 

in CAWAPI did not match exactly the conditions of the flight data, and in particular the angle of incidence is lower 

in the computations than the measurements for the comparisons shown here. This is likely to have the effect of 

making the primary vortices weaker in the computational results, with lower suction in the footprint on the wing. 

Computational results were available from the vortex correction variants of the k-ω models in ENSOLV and PMB, 

and from the k-ε and ASM models in PAB3D. 

The comparison for the surface pressure coefficient is shown in Fig. 2 for three butt lines (BL’s), 80, 95 and 

153.5, going progressively outboard. The general agreement for the two BL’s inboard of the crank is good. The 

ENSOLV predictions show similar suction levels for the primary vortex. The PMB and PAB3D k-ε predictions have 

weaker vortices, with the PMB solution showing a more compact vortex footprint. The comparisons at BL 80, 

showing the lack of a flat region in the Cp-distribution close to the leading edge, indicate that the strength of the 

secondary inboard vortex is under predicted. The secondary vortex appears to have developed more fully by BL90. 

The comparisons outboard of the crank, at BL153.5, are less favourable. The suction in the primary outboard vortex 

is significantly less than the measurements in all predictions. 

The boundary layer profiles are compared in Fig. 3. Three inboard rake locations are used, with one being 

inboard of the primary vortex, the second underneath the primary vortex, and the third in the region of the secondary 

vortex. The general agreement with flight measurements is again good, and ENSOLV and PMB are also close. For 
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the rake closest to the leading edge the ASM model and the vortex correction models give a fuller profile than the 

measurements and the k-ε predictions.  

The comparison of the skin friction values along a fuselage station is shown in Fig. 4. The PMB prediction, 

which has not been extracted, is not included. The comparisons show that the levels under the primary vortex agree 

well with the measurements, with the PAB3D predictions being lower than those from ENSOLV. Again there is 

more discrepancy under the secondary vortex, with levels being too high from ENSOLV, and more in line with the 

measurements for PAB3D. The k-ε predictions show the wrong shape in this region but the ASM predictions are 

closest to the measurements. 

Finally, the comparison between surface streamlines from the ENSOLV solution, and tufts from the flight tests, 

is shown in Fig. 5. The black dots visible are calibration targets.  Inboard of the crank the agreement in the flow 

direction as indicated by the tufts and surface streamlines is good. The re-attachment line of the inner wing primary 

vortex and the separation line of the inner wing secondary vortex are clearly visible. The agreement in the flow 

direction outboard of the crank is less good. It is noted that here the tufts have a blurred character, indicating local 

unsteadiness of the flow.  

 

D. Evaluation 

The comparisons with flight data indicate that the CFD predictions are generally good. However, some flow 

details are not well represented and these are considered in the current section.  It is observed that the wing leading 

edge geometry, and the high Reynolds number, are both helpful to the CFD in the sense that the prediction of the 

initial flow separation around the leading edge is made easier. First, the geometry towards the fuselage S-blend 

contains a flat strip at the section leading edge which has the effect of producing a sharp corner. This corner fixes 

the separation point and so the problem of predicting a smooth body separation, which is a challenge for CFD, is not 

present, at least when the inner wing primary vortex is becoming established. The leading edge at the crank is very 

sharp, meaning the same situation holds at the formation of the primary outboard vortex. Further, the high Reynolds 

number means that the leading edge flow is likely to be fully turbulent, avoiding any influence of transition. Flow 

separation in all solutions was observed to be right at the section leading edge, both inboard and outboard of the 

crank, as indicated in Fig. 6.  
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The upper wing flow is very complex with a number of separations and reattachments, as illustrated in Fig. 6. 

The surface streamline pattern in this figure is composed of the following main elements: 

a) The primary separation on the inner and outer wing. The flow separates on the wing leading edge. On the 

part of the wing in board of the crank this separation results in the inner wing primary vortex, whereas on the 

part of the wing out board of the crank the outer wing vortex is formed. 

b) The primary re-attachment on the inner wing. At this line the vortical flow associated with the inner wing 

primary vortex re-attaches on the wing surface. Note that for the present case the inner wing primary vortex lifts 

off of the surface, resulting in a fanning out of the re-attachment line. 

c) The secondary separation on the inner wing. Underneath the inner wing primary vortex the flow separates 

resulting in the inner wing secondary vortex. This separation line starts some distance downstream of the apex of 

the wing and is present up to the wing trailing edge. 

d) The secondary re-attachment on the inner wing. At this line the vortical flow associated with inner wing 

secondary vortex re-attaches to the wing surface. This re-attachment line extends until the leading edge of the air 

dam. 

e) The re-attachment on the inner wing side of the air dam. After reaching the air dam the vortical flow 

resulting from the inner wing secondary vortex re-attaches to the inner wing side of this air dam. Note that this 

re-attachment line is a continuation of the secondary re-attachment line on the inner wing. When the air dam 

changes to the actuator pod this re-attachment line stops to exist, and the vortical flow associated with the inner 

wing secondary vortex re-attaches in the junction between the actuator pod and the wing. 

f) The separation from the edge of the air dam. The flow separates from the upper edge of the air dam. This 

separation results in the air dam vortex.  

g) The separation on the actuator pod. The flow separates from the upper side of the actuator pod. Note that 

this separation starts before the intersection of the air dam and the actuator pod. The air dam vortex is fed further 

by the flow coming from this separation. 

h) The re-attachment on the outer wing of the outer wing vortex and the air dam vortex. At this line the vortical 

flows associated with both the outer wing vortex and the air dam vortex re-attach.  
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i) The separation due to the air dam vortex. Due to the air dam vortex the flow separates just outboard of the 

air dam. This separation results in a small vortex in the outboard junction region between the air dam and the 

wing surface.  

j) The re-attachment on the outer wing side of the air dam. The vortical flow associated with the small vortex 

described in i) re-attaches to the air dam at this line. 

 

The different turbulence options provided results which followed a pattern. The k-ε model predicted weaker 

vortices due to the excessive levels of turbulence produced. The ASM produced a stronger inner wing primary 

vortex, as shown in Fig. 7 for FC46. The vortex correction models also fixed this problem, and realistic levels of 

suction under the primary inboard vortex were obtained with a simple correction to the underlying k-ω models.  

Inboard of the crank, problems were noted with the strength of the inner wing secondary vortex. The grid in the 

region concerned was observed to be somewhat coarse, meaning that no conclusions could be drawn about the 

performance of the physical modelling there.  

The most important discrepancy arising from the comparisons is the very weak primary vortex predicted 

outboard of the crank. The flow in this region is very complex, featuring the primary and secondary inner wing 

vortices, the outboard primary and secondary vortices, and also vortices that have arisen from the interaction of the 

inboard vortices with the air dam. There are two main possibilities for the weakness of the predicted outboard 

primary vortex. First, the levels of turbulence predicted for the PMB solution are shown in Fig. 8. The turbulent 

Reynolds number plotted is defined as the ratio of the eddy viscosity to the molecular viscosity, and is an indication 

of how much more viscous the flow is from the contribution of the turbulence model. Low levels of turbulence are 

indicated in blue and high levels in red. The influence of the vortex correction on the inner wing vortex and the 

vortex arising from the interaction with the air dam can be seen. However, the outer wing primary vortex is filled 

with red, indicating high levels of turbulence there, explaining its weakness. The flow in this region is complex, with 

regions of shear between different vortices. The simple vortex correction appears to fail because the levels of 

turbulence in the outer wing vortex are not simply down to production terms, but to convection of turbulence also. 

Interesting, the more general ASM also fails to predict the outboard primary vortex strength close to the 

measurements and this may be due to the coarse nature of the computational grid in the area of interest. To better 
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resolve the outer primary vortex one needs a finer grid along the full trajectory of the vortex core or to use grid 

adaption methodology that will cluster points in areas of high flow gradients.   

The second consideration in this region is the likely presence of unsteady flow when several vortices are in close 

proximity. Evidence for this comes from the photographs of the tufts from the flight tests, which are blurred in this 

region. All of the computations presented in this article assumed steady state flow. 

E. Assessment of Solver Performance 

The ENSOLV calculations used grid sequencing on three levels and a two-level full approximation storage 

multi-grid scheme to solve on the two finer grid levels.  The simulations were performed on two processors of 

NLR’s NEC SX5/8B vector computer. Four orders of convergence were obtained for the root mean square norms. 

Larger block dimensions result in an increase of the vector length, and merging the blocks (see section III) resulted 

in a reduction of the required computational time by a significant factor of around 4. The final calculation of a flight 

condition required around 16 hours, and 1200 fine grid multigrid cycles. 

The PAB3D solution also used two levels of grid sequencing. The calculations were run on a cluster with 

2.8GHz processors. A typical calculation on 56 processors gave a converged solution in 51 wall clock hours and ten 

thousand fine grid iterations. 

The PMB calculations were made on the Liverpool University CFD Laboratory cluster which has 192 processors 

with a clock speed of 3.4GHz. The calculations required around 2 days on 96 processors, with up to twenty thousand 

iterations required to reach convergence.  No grid sequencing was used.  The main difficulty with the calculations 

was the small CFL number required to avoid divergence. For difficult cases involving large gradients it is usual to 

for PMB to run with a CFL number of 5. However, the current calculations required a CFL number of 1 or 2, 

leading to a large number of iterations to convergence. One possible reason for the relatively poor performance is 

the flow behind the tip missile, which appeared to be unsteady. The probability of unsteady flow outboard of the 

crank could also be a reason. 

 

VI Conclusion 

This article presented and evaluated results obtained from three multi-block RANS solvers for the F-16XL 

aircraft. The following conclusions are drawn 
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1. The generation of a good quality grid was achieved by NLR in a time comparable to that required for 

the generation of unstructured grids within CAWAPI. 

2. The agreement between the 3 codes was generally good, with the expected dependence on the 

turbulence modelling observed. 

3. The inner wing primary vortex was well predicted by the vortex correction based turbulence models, 

offering an easy way to implement a correction to standard 2 equation Boussinesq models. 

4. The outboard primary vortex was not predicted well by any code, perhaps due to unsteady flow in this 

region. 

5. Computational wall clock time of one to two days was observed for all three codes. 
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Fig. 1: Iso-surface (level equals 250 Hz) of vorticity magnitude for flight condition 7 (α=11.89°, M=0.304 and 
Re=44.40 106). The vortices are colored by the pressure coefficient Cp. 
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Fig. 2: Surface pressure coefficient for flight condition 7 (α=11.89°, M=0.304 and Re=44.40 106) and flight 
condition 19 (α=11.85°, M=0.360 and Re=46.80 106) along butt lines: a) BL55, b) BL80, c) BL 95. 
 

 
a) BL 80 

 
b) BL 95 

 
c) BL 153.5 
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a) 

 
b) 

 
c) 

Fig. 3: Boundary layer profiles for flight condition 7 (α=11.89°, M=0.304 and Re=44.40 106). 
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Fig. 4: Local skin friction coefficient for flight condition 19 (α=11.85°, M=0.360 and Re=46.80 106) at FS300 
(dashed line) and FS330 (solid line). 
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Fig. 5: Surface streamlines superimposed on the negative of the tuft image for flight condition 7 (α=11.89°, 
M=0.304 and Re=44.40 106), Flight 145, Run 16b, Video (yr, 1996), 078:14:03:44 (Day:hr:min:sec). 
 

 
Fig. 6: Surface streamline pattern for flight condition 7 (α=11.89°, M=0.304 and Re=44.40 106), overview of 
the surface streamline pattern. 
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Fig. 7:. Upper surface pressure distribution with streamlines flight condition 46 (αααα = 10.4°°°°, M=0.527 and 

Re=46.9 106). 
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Fig. 8: Contours of turbulent Reynolds number for flight condition 7(α=11.89°, M=0.304 and Re=44.40 106) 
on a spanwise slice just downstream of the crank. Here the turbulent Reynolds number is the ratio of the 
eddy viscosity to the molecular viscosity. 

 


